Jmerd

Material Behaviour of Aluminum Al 360 Alloy Hollow Ring Preforms

Views: | Download:
Author(s): S.Sathishkumar†, S.Kannan†, S.ThirumalaiKumar‡
Affiliation(s): 
†Faculty of Mechanical Engineering, Vel Tech, Avadi, Chennai-62, Tamil Nadu, India
‡Faculty of Mechanical Engg ,Shanmuganathan Engg College, Arasampatti– 622507, Tamil Nadu, India
 
Cite this paper
S.Sathishkumar, S.Kannan, S.ThirumalaiKumar, "Material Behaviour of Aluminum Al 360 Alloy Hollow Ring Preforms", Journal of Mechanical Engineering Research and Developments, vol. 40, no. 4, pp. 595-610, 2017. DOI: 10.7508/jmerd.2017.04.008
 
Document Type: Research Article
 
View Fulltext: PDF
 
Abstract
Aluminum-based composites appear to be promising material for engineering due to their excellent thermo physical properties coupled with better high temperature mechanical properties as compared to Aluminum and Aluminum alloys. Aluminum based sintered composites produced by powder metallurgy processes are now widely used in tribological engineering parts, e.g., bearing and bushes. In this project the Aluminum powder is considered as the matrix material and Graphite as a reinforcement material. Aluminum- Graphite performs are formed by powder metallurgy route using the die set assembly. The various proportions of powders are mixed respect to its volume fraction and the preforms are produced with 6:3:2 (OD: ID: H) by keeping the preforms of the matrix and reinforce materials. In this specimen had been prepared with the composition of 1% 3% 10% 20% Graphite with the remaining of aluminum powder. The specimen is prepared through powder metallurgy technique, which has larger advantage comparing to the other techniques used for the preparation of the specimen. The specimen mechanical properties had been verified through numerous tests like Micro hardness, Microstructure, Scanned Electron Microscope, X-Ray Diffraction Tests.
 
Keywords
Aluminum; Graphite; Hollow ring preforms; Microstructure; Scanned electron microscope; X-Ray diffraction.  

References
[1] T. A. Stolarski, Tribology in machine design. Heinemann Newnes, 1990.
[2] Gwiden.W. Stachowiak. Andrew W. Batchelor.  “Modern Tribology Hand Book” vol.1 E.I.C Bharat Bhusan, pp. 88, 2000.
[3] G.C. Pratt, Tribology 6,  pp. 259-261, 1973.
[4] Hirotaka Kato, Masahiro Takamaa, Yoshiro Iwai b, Kazuo Washidac, Yoshinori Sasaki c, Wear, vol. 255, pp. 573-578, 2003
[5] K. Rajkumar, S. Aravindan, “Tribological Performance of Microwave-Heat-Treated Copper-Graphite Composites”, Tribology Letters, vol. 37, no. 2, pp. 131-139, 2010.
[6] Y. Tsuya, H. Shimura, K. Umeda, “A study of the properties of copper and copper-tin base self-lubricating composites”, Wear,  vol. 22, no. 2, pp. 143-162, 1972.
[7] F. Akhlaghi, A. Zare- Bidake,  “Influence of graphite content on the dry sliding and oil impregnated sliding wear behavior of Al 2023-graphite composites produced by situ Powder Metallurgy method”, Wear, 266(1-2), pp. 37-45, 2009.
[8] Mustafa Ilhan Gokle, H. Darendeliler, Nazim Elmaskaya,  “Analysis of tapered pre-forms in cold upsetting”, Intl.Jl.Machine Tools and Manuf., vol 39, pp .1-16, 1999.
[9] T. Tabata and S.Masaki, “The effectiveness of various lubricants by measuring the coefficient of friction between the metal powder and die wall”, Powder Metall.Intl., vol. 13, pp. 179-185, 1982.
[10] J. Kahlow, 1971. “Void behavior as influenced by pressure and plastic deformation”, Institute of Metal Forming Report”, Lehigh University, Bethlehem, PA, USA, pp. 10-16.
[11] R. Narayanasamy, K. S. Pandey, “Some aspects of work hardening in sintered Aluminium composite iron pre-forms during cold axial forming”, Journal of Material Processing Technology, vol. 83, pp. 136- 132, 1998.
[12] N. Selvakumar, R. Narayanasamy, K. S. Pandey, “Some aspects of cold upset forming of sintered Aluminium performs using different lubricants”, Materials Science and Technology,  vol 20, 2003.
[13] M.H. Es-Saheb, “Powder Compaction interpretation using the Power law”, Journal of Material Science, vol. 28, pp. 1269-1275, 1993.
[14] M. H. Es-Saheb, “Dynamic compaction powders: Theoretical Formulation”, 8th International conference Machine Design and Production Conference”, UMTIK’98, September 9-11, Ankara, Turkey.
[15] M. H. Es-Saheb, “Analytical Formulation of Powder compaction Mechanics”, 8th International conference Machine Design and Production Conference”, UMTIK’98, September 9-11, Ankara, Turkey.
[16] D. V.Tran, R. W. Lewis, D.T.Gethin, and A.K. Ariffin, “Numerical Modelling of Powder compaction Process: Displacement based Finite element method”, Powder Metallurgy, vol. 86, no. 3, pp. 257-266, 1993.
[17]  J. A. Schey, T. R. Venner, S. L. Takomana. “Shape changes in the upsetting of slender cylinders”, ACME,J1, of Engg. Ind, vol. 104, pp. 79-83, 1982.
[18] N. Selvakumar, R. Narayanasamy and K.S. Pandey (April 2004) “Some aspects of cold upset forming of sintered Aluminium preforms using different lubricants”, Materials science and technology, Vol.20, PP.
[19] G. Surandhar, A. K. Jha, S. Kumar, “Cold  forging of sintered iron powder preform”, Journal of materials processing technology, vol.51, pp. 369 - 386, 1995.
[20] G. Surandhar, A. K. Jha, S. Kumar, “Production of sinter-forged components”, Journal of Materials Processing Technology, vol. 41, no. 41, pp. 143-169, 1994.
[21] T. Tabata, S. Masak. “The effectiveness of various lubricants by measuring the co-efficient of friction between the metal powder and die wall”, Powder metal Intl., vol. 13, pp. 179-185, 1982.
[22] M.H.Es. Saheb (1998) “Powder compaction interpretation using the powder law”, Journal of material science, 1993, Vol.28, PP 1269 - 1275.
[23] D. Durgalaxmi, B. Vamsikrishna, D. R. G. Achar,  P. Venugopal, “Studies on solid state joining of dissimilar powder  metallurgical performs”, Journal of Materials processing Technology, vol. 132, pp. 293 - 304, 2003.
[24] V. Lavaste, J. Besson, M. Berger, A. R. Bunsel, J. Am. Ceram. Soc. vol. 78, pp. 3081, 1995.
[25] G. Das, Ceram. Eng. Sci. Proc. vol. 16, pp. 977, 1995.
[26] T.F. Cooke, J. Am. Ceram. Soc. vol. 74 , pp. 2959, 1991.
[27] B.G. Park, A.G. Crosky, A.K. Hellier, J. Mater. Sci. vol. 36, pp. 2417, 2001.
[28] L. Ceschini, A.Morri, R. Cocomazzi, E. Troiani,Mat -wiss UWerkstofftech. vol. 34, pp. 370,  2003.
[29] Chia-Chaw Perng, Jiun-Ren Hwang, Ji-Liang Doong, Mater. Sci. Eng., A171, pp. 213, 1993.
[30] M. Vedani, E. Gariboldi, Acta Metall. vol. 44, pp. 3077, 1996.
 
Copyright @ 2017 by authors and JMERD.This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).http://creativecommons.org/licenses/by/4.0/